Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 39: 107673, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34934787

RESUMO

This dataset describes the performance of cattle in smallholder livestock systems of Bomet county in western Kenya. Information on live weight, milk production and quality, herd dynamics, and other production parameters were collected from field visits. Animals were weighed on scales; milk yield was recorded using a Mazzican® milk collection and transport vessel provided to each farm and milk was analyzed for butterfat content (%). Pasture biomass yield was determined, and feed samples collected for each agro-ecological zone and nutrient composition was determined for nitrogen (N) using the Kjeldahl method and gross energy (GE) using a bomb calorimeter. Distance covered while grazing was determined using GPS collars fitted to several animals for three consecutive days per area. Enteric methane (CH4) emissions factors (EF) were estimated for five animal classes to develop site-specific EFs as per the Intergovernmental panel on climate change (IPCC) protocol. This dataset has the potential to be used, amongst other purposes, for animal-scale life cycle assessment (LCA) to evaluate the efficacy of various greenhouse gas (GHG) mitigation options.

2.
Sci Rep ; 11(1): 22094, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764428

RESUMO

We applied the process-based model, LandscapeDNDC, to estimate feed availability in the Sahelian and Sudanian agro-ecological zones of West Africa as a basis for calculating the regional Livestock Carrying Capacity (LCC). Comparison of the energy supply (S) from feed resources, including natural pasture, browse, and crop residues, with energy demand (D) of the livestock population for the period 1981-2020 allowed us to assess regional surpluses (S > D) or deficits (S < D) in feed availability. We show that in the last 40 years a large-scale shift from surplus to deficit has occurred. While during 1981-1990 only 27% of the area exceeded the LCC, it was 72% for the period 2011-2020. This was caused by a reduction in the total feed supply of ~ 8% and an increase in feed demand of ~ 37% per-decade, driven by climate change and increased livestock population, respectively. Overall, the S/D decreased from ~ 2.6 (surplus) in 1981 to ~ 0.5 (deficit) in 2019, with a north-south gradient of increasing S/D. As climate change continues and feed availability may likely further shrink, pastoralists either need to source external feed or significantly reduce livestock numbers to avoid overgrazing, land degradation, and any further conflicts for resources.

3.
Animals (Basel) ; 11(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671605

RESUMO

Effects of feeding levels below maintenance requirements of metabolizable energy (MER) and of feed supplementation on fecal nutrient and microbial C concentrations were evaluated. In experiment 1, Rhodes grass hay only was offered to Boran steers at 80%, 60%, and 40% of individual MER, while steers at 100% MER additionally received a concentrated mixture. This reduction in MER decreased N, increased fungal C but did not affect bacterial C concentrations in feces. In experiment 2, Holstein × Boran heifers were offered a poor-quality roughage diet without supplement, with sweet potato vine silage or with a urea-molasses block. These two supplements did not affect the fecal chemical composition or fungal C but increased bacterial C concentrations in feces. Across all data, the fungal C/bacterial C ratio was positively related to N and negatively to neutral detergent fiber concentrations in feces, indicating diet-induced shifts in the fecal microbial community.

4.
Waste Manag ; 126: 209-220, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774581

RESUMO

Countries in sub-Saharan Africa (SSA) rely on IPCC emission factors (EF) for GHG emission reporting. However, these were derived for industrialized livestock farms and do not represent conditions of smallholder farms (small, low-producing livestock breeds, poor feed quality, feed scarcity). Here, we present the first measurements of CH4 and N2O emissions from cattle-manure heaps representing feeding practices typical for smallholder farms in the highlands of East Africa: 1) cattle fed below maintenance energy requirements to represent feed scarcity, and 2) cattle fed tropical forage grasses (Napier, Rhodes, Brachiaria). Sub-maintenance feeding reduced cumulative manure N2O emissions compared to cattle receiving sufficient feed but did not change EFN2O. Sub-maintenance feeding did not affect cumulative manure CH4 emissions or EFCH4. When cattle were fed tropical forage grasses, cumulative manure N2O emissions did not differ between diets, but manure EFN2O from Brachiaria and Rhodes diets were lower than the IPCC EFN2O for solid storage (1%, 2019 Refinement of IPCC Guidelines). Manure CH4 emissions were lower in the Rhodes grass diet than when feeding Napier or Brachiaria, and manure EFCH4 from all three grasses were lower than the IPCC default (4.4 gCH4kg-1 VS, 2019 Refinement of IPCC Guidelines). Regression analysis revealed that manure N concentration and C:N were important drivers of N2O emissions, with low N concentrations and high C:N reducing N2O emissions. Our results show that IPCC EFs overestimate excreta GHG emissions, which calls for additional measurements to develop localized EFs for smallholder livestock systems in SSA.


Assuntos
Esterco , Óxido Nitroso , Animais , Bovinos , Quênia , Metano , Óxido Nitroso/análise , Melhoramento Vegetal
5.
Sci Total Environ ; 761: 143184, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33176934

RESUMO

Dung and urine patches on grasslands are hotspots of greenhouse gas (GHG) emissions in temperate regions, while its importance remains controversial for tropical regions as emissions seem to be lower. Here we investigated N2O, CH4 and CO2 emissions from urine and dung patches on tropical pastures in Kenya, thereby disentangling interactive and pure water, dung or urine effects. GHG fluxes were monitored with automated chambers for 42-59 days covering three seasons (short rainy season, long rainy season, dry season) for six treatments (Control; +1 L water; +1 kg dung; 1 L urine; 1 L water +1 kg dung; 1 L urine +1 kg dung). Cumulative CO2 emissions did not differ among treatments in any of the seasons. Water or urine addition alone did not affect CH4 fluxes, but these were elevated in all dung-related treatments. Scaled up on the total area covered, dung patches halve the CH4 sink strength of tropical pastures during the dry season, while during the rainy season they may turn tropical pastures into a small CH4 source. For N2O, both dung and urine alone and in combination stimulated emissions. While the N2O emission factor (EFN2O) from dung being constant across seasons, the EFN2O for urine was greater during the short rainy season than during the dry season. Combined application of urine + dung was additive on EFN2O. While the mean dung EFN2O in our study (0.06%) was similar to the IPCC Guidelines for National GHG Inventories EFN2O for dry climate (0.07%), the urine EFN2O we measured (0.03-0.25%) was lower than the IPCC value (0.32%). In addition, the IPCC Guidelines assume a urine-N: dung-N ratio of 0.66:0.34, which is higher than found for SSA (<0.50:0.50). Consequently, IPCC Guidelines still overestimate N2O emissions from excreta patches in SSA.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono , Fezes/química , Gases de Efeito Estufa/análise , Quênia , Metano/análise , Óxido Nitroso/análise , Estações do Ano
6.
Genome Biol ; 21(1): 229, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883364

RESUMO

BACKGROUND: The Boran (Bos indicus), indigenous Zebu cattle breed from sub-Saharan Africa, is remarkably well adapted to harsh tropical environments. Due to financial constraints and low-quality forage, African livestock are rarely fed at 100% maintenance energy requirements (MER) and the effect of sub-optimal restricted feeding on the rumen microbiome of African Zebu cattle remains largely unexplored. We collected 24 rumen fluid samples from six Boran cattle fed at sub-optimal and optimal MER levels and characterised their rumen microbial composition by performing shotgun metagenomics and de novo assembly of metagenome-assembled genomes (MAGs). These MAGs were used as reference database to investigate the effect of diet restriction on the composition and functional potential of the rumen microbiome of African cattle. RESULTS: We report 1200 newly discovered MAGs from the rumen of Boran cattle. A total of 850 were dereplicated, and their uniqueness confirmed with pairwise comparisons (based on Mash distances) between African MAGs and other publicly available genomes from the rumen. A genome-centric investigation into sub-optimal diets highlighted a statistically significant effect on rumen microbial abundance profiles and a previously unobserved relationship between whole microbiome shifts in functional potential and taxon-level associations in metabolic pathways. CONCLUSIONS: This study is the first to identify 1200 high-quality African rumen-specific MAGs and provides further insight into the rumen function in harsh environments with food scarcity. The genomic information from the rumen microbiome of an indigenous African cattle breed sheds light on the microbiome contribution to rumen functionality and constitutes a vital resource in addressing food security in developing countries.


Assuntos
Bovinos/microbiologia , Privação de Alimentos/fisiologia , Microbioma Gastrointestinal , Metagenoma , Rúmen/microbiologia , África Subsaariana , Animais
7.
J Anim Physiol Anim Nutr (Berl) ; 103(5): 1325-1337, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31318115

RESUMO

The present study evaluated the effects of energetic undernutrition on liquid and solid digesta passage and on nutrient digestibility as well as their interdependencies. Using a 4 x 4 Latin square design, 12 growing Boran steers (183 ± 15.2 kg live weight) were allocated to four levels of metabolizable energy (ME) supply fixed at 100, 80, 60 and 40% of individual maintenance energy requirements (MER) during four experimental periods. Each period comprised three weeks of adaptation, two weeks of data collection and two weeks of recovery. Diets MER80, MER60 and MER40 only consisted of Rhodes grass hay (RGH), whereas diet MER100 contained (as fed) 83% RGH, 8% cotton seed meal and 9% sugarcane molasses. Feed intake differed between treatments (p < .001) and ranged from 40 ± 0.6 g dry matter (DM) per kg of metabolic weight (kg0.75 ) in MER40 to 81 ± 1.3 g DM in MER100. Digestibility of neutral and acid detergent fibre (NDF, ADF) was highest at MER80, whereas rumen retention time of liquid and solid digesta was longest at MER40. The correlation of rumen retention time of liquid and solid digesta with the digestibility of proximate diet components was weak but positive, whereas the correlation of liquid and solid rumen retention time with quantitative feed and nutrient intake was strong (p < .01) and negative. Our results suggest that tropical cattle are able to buffer a moderate energy deficit by prolonging rumen retention time of digesta and hence improve diet digestibility. Conversely, a severe energy deficit cannot be buffered by digestive adaptation mechanisms and will inevitably lead to productivity losses.


Assuntos
Ração Animal , Bovinos/fisiologia , Digestão/fisiologia , Conteúdo Gastrointestinal/química , Motilidade Gastrointestinal/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Ingestão de Energia , Masculino , Nutrientes
8.
Animals (Basel) ; 9(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052306

RESUMO

Given their high nitrogen (N) concentration and low costs, sweet potato vine silage (SPVS) and urea-molasses blocks (UMB) are recommended supplements for tropical regions; therefore, they were investigated in this study. Six heifers were allocated to three diets: the roughage diet (R) consisted of wheat straw (0.61) and Rhodes grass hay (0.39; on dry matter (DM) basis); R + SPVS combined R (0.81) and SPVS (0.19); and with R + UMB animals had access to UMB. During two experimental periods, feed intake, feces and urine excretion, digesta passage, and rumen microbial protein synthesis were determined during seven days and methane emissions during three days. There was no treatment effect (p > 0.05) on DM and N intake. Apparent DM digestibility of R + SPVS (510 g/kg) was higher (p < 0.05) than of R (474 g/kg). Digesta passage and duodenal microbial N flow were similar for all diets (p > 0.05), while N retention was highest with R + SPVS (p > 0.05). Methane emissions per unit of digested feed (g CH4/kg dDM) were lower (p < 0.05) for R + SPVS (55.2) than for R (64.7). Hence, SPVS supplementation to poor-quality roughage has the potential to increase diet digestibility and N retention while reducing CH4 emissions.

9.
Arch Anim Nutr ; 73(2): 140-157, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30784311

RESUMO

This study aimed at evaluating the effects of feed intake level on the efficiency of rumen microbial protein synthesis (EMPS), nitrogen (N) excretion, and N balance in twelve 18-months old Boran (Bos indicus) steers with initial average liveweight of 183 kg (standard deviation (SD) 15.2). The experiment followed a 4 × 4 complete Latin Square design with four dietary treatments tested in four periods. Each period ran for 5 weeks with 3 weeks of adaptation and 2 weeks of sample collection; separated by 2 weeks of re-feeding. Steers were fed at 100%, 80%, 60%, and 40% of their metabolisable energy requirement for maintenance (MER, referred to as MER100, MER80, MER60, and MER40, respectively). Steers receiving MER80, MER60, and MER40 were only fed Rhodes grass hay. MER100 steers were offered Rhodes grass hay at 80% of their MER and cottonseed meal and sugarcane molasses at each 10% of MER. Mean daily dry matter intake differed between treatments (p < 0.001) and ranged between 2.1 kg/animal (SD 0.13) in MER40 and 4.5 kg/animal (SD 0.31) in MER100. Urinary N excretion and N balance did not differ between MER80, MER60, and MER40. According to contrast test, declining feed intake level from MER80 to MER40 reduced duodenal microbial crude protein flow (p < 0.001), but did not alter the EMPS (g microbial N/kg digestible organic matter intake). Yet, if scaled to N intake, EMPS increased (p < 0.049), whereas total N and faecal N excretions decreased linearly with declining intake level (p < 0.001 for both variables). At similar grass hay intake, duodenal microbial crude protein flow was 41% higher in MER100 than in MER80 steers (p < 0.001). In cattle offered poor-quality tropical forage below their MER, the very low EMPS and thus microbial protein supply aggravate the negative effects of low dietary nutrient and energy intakes in periods of feed shortage.


Assuntos
Ração Animal/análise , Proteínas de Bactérias/metabolismo , Bovinos/fisiologia , Dieta/veterinária , Nitrogênio/metabolismo , Ração Animal/normas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/metabolismo , Proteínas de Bactérias/genética , Alimentação com Mamadeira , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Masculino , Distribuição Aleatória
10.
Asian-Australas J Anim Sci ; 32(5): 637-647, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30056650

RESUMO

OBJECTIVE: The study aimed at quantifying seasonal and spatial variations in availability and nutritive value of herbaceous vegetation on native pastures and supplement feedstuffs for domestic ruminants in Western Kenya. METHODS: Samples of herbaceous pasture vegetation (n = 75) and local supplement feedstuffs (n = 46) for cattle, sheep, and goats were collected in 20 villages of three geographic zones (Highlands, Mid-slopes, Lowlands) in Lower Nyando, Western Kenya, over four seasons of one year. Concentrations of dry matter (DM), crude ash (CA), ether extract (EE), crude protein (CP), neutral detergent fibre (NDF), gross energy (GE), and minerals were determined. Apparent total tract organic matter digestibility (dOM) was estimated from in vitro gas production and proximate nutrient concentrations or chemical composition alone using published prediction equations. RESULTS: Nutrient, energy, and mineral concentrations were 52 to 168 g CA, 367 to 741 g NDF, 32 to 140 g CP, 6 to 45 g EE, 14.5 to 18.8 MJ GE, 7.0 to 54.2 g potassium, 0.01 to 0.47 g sodium, 136 to 1825 mg iron, and 0.07 to 0.52 mg selenium/kg DM. The dOM was 416 to 650 g/kg organic matter but differed depending on the estimation method. Nutritive value of pasture herbage was superior to most supplement feedstuffs, but its value strongly declined in the driest season. Biomass yields and concentrations of CP and potassium in pasture herbage were highest in the Highlands amongst the three zones. CONCLUSION: Availability and nutritive value of pasture herbage and supplement feedstuffs greatly vary between seasons and geographical zones, suggesting need for season- and region-specific feeding strategies. Local supplement feedstuffs partly compensate for nutritional deficiencies. However, equations to accurately predict dOM and improved knowledge on nutritional characteristics of tropical ruminant feedstuffs are needed to enhance livestock production in this and similar environments.

11.
Br J Nutr ; 111(4): 578-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24103253

RESUMO

In the present study, following the measurement of methane emissions from 160 mature ewes three times, a subset of twenty ewes was selected for further emission and physiological studies. Ewes were selected on the basis of methane yield (MY; g CH4/kg DM intake) being low (Low MY: >1 sd below the mean; n 10) or high (High MY: >1 sd above the mean; n 10) when fed a blended chaff ration at a fixed feeding level (1·2-fold maintenance energy requirements). The difference between the Low- and High-MY groups observed at the time of selection was maintained (P= 0·001) when remeasured 1-7 months later during digesta kinetics studies. Low MY was associated with a shorter mean retention time of particulate (P< 0·01) and liquid (P< 0·001) digesta, less amounts of rumen particulate contents (P< 0·01) and a smaller rumen volume (P< 0·05), but not apparent DM digestibility (P= 0·27) or urinary allantoin excretion (P= 0·89). Computer tomography scanning of the sheep's rumens after an overnight fast revealed a trend towards the Low-MY sheep having more clearly demarcated rumen gas and liquid phases (P= 0·10). These findings indicate that the selection of ruminants for low MY may have important consequences for an animal's nutritional physiology.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Fibras na Dieta/metabolismo , Digestão , Metano/metabolismo , Rúmen/metabolismo , Ovinos/metabolismo , Ração Animal , Animais , Feminino , Trânsito Gastrointestinal , Efeito Estufa , Rúmen/anatomia & histologia , Rúmen/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...